Save 75% - Only $49.99 for 1 full year! digitalPLUS subscription offer ends 12/1
NewsOpinionOp-Eds

Wind farms aren't the answer to cutting Md.'s greenhouse gas emissions

Renewable EnergyWind PowerSolar EnergyAlternative EnergyNuclear PowerGlobal Warming

Constellation Energy held a ribbon cutting ceremony this week for its new wind farm in Western Maryland. This project is fortunately small compared to what Gov. Martin O'Malley plans for offshore of the Maryland coast and will not present a major increase in the cost of electricity to Maryland residents, but it is a success for the consistently politically correct green politicians.

The problem with wind power is that electricity cannot be stored on an industrial scale, so standby power sources must be available to immediately come on line to make up for periods when the wind doesn't blow or when the wind is blowing too hard. In the former case the windmill simply stops, and in the latter the windmill is shut down to keep the blades from flying off.

The poster child for wind power is the offshore 2,000 megawatt wind farm in Denmark which is billed as providing 20 percent of that nation's power requirements. In fact, the wind farm's power production hardly ever reaches the stated capacity, and there are long periods when there is essentially no power coming from this facility at all. On average, the Denmark wind farm produces about 30 percent of its design capacity. No fossil fuel power plants were shut down as a result of its construction, but by necessity they provide standby power when the wind turbines operate below design capacity.

There are two options with wind turbine installations: Either provide 100 percent standby capacity or accept that power supply will be extremely unpredictable with unplanned power outages. Wind turbine proponents tend to downplay the investment requirements for standby equipment. In an ideal situation, gas turbines would be installed specifically to make up for the wide variations in wind farm power production.

In the practical world, base load demand is met by burning fossil fuels or by nuclear fission to produce steam to drive turbine generators. Power plants must have the capability to instantaneously increase production when a light switch, coffee pot, toaster or electric hot water heater comes on, and during the peak of the day during hot weather when air conditioners come into use. In addition to this residential consumption are businesses that require different levels of power supply during the day.

Power providers expect this to happen, and based on the time of day and season, they bring on standby equipment. This known variable requirement is called the diurnal cycle. Erratic unplanned variations in wind power cannot be scheduled into the cycle.

When wind turbines come onto the grid, they will essentially replace base load power production. But because wind power is unreliable, traditional base load boilers must continue to burn fossil fuel. They function as spinning reserves to respond to increases and decreases in wind speed and maintain boiler temperatures near that required to instantaneously increase power production. With increased wind power, the energy displaced in the base load power is wasted. Studies of existing systems with wind turbines on average providing 1 percent of the total power show that there is no savings in fossil fuel. When the wind power is at 2 percent there is an increase in fossil fuel used by the base load plants.

Bentek Energy analyzed records from Colorado and Texas, which have significant wind turbine installations. The company concluded that in spite of the large investments, wind turbine installations had a negligible impact on carbon dioxide production. Despite the presence of windmills connected to the grid, Colorado's coal-fired plants produced more carbon dioxide because of repeated cycling in 2009. In Texas, use of wind mills resulted in a slight reduction in carbon dioxide in 2008 and a modest increase in 2009.

In Europe, Denmark and Germany have installed significant wind turbine capacity, and the cost of power is very high because of the subsidies that are necessary to make windmills viable. France has the lowest power costs in Europe. It relies to a small degree on wind power, but nuclear plants provide 80 percent of the nation's requirements.

Wind turbines will do nothing for carbon dioxide reduction and provide little actual net power. Wind farm installations will not reduce the fuel used in the existing power plants, and in a replay of the deregulation debacle in Maryland, consumers will pay subsidies for wind power investments through increased power rates.

To reduce carbon dioxide production, provide secure domestic power, minimize power costs, and not be tied to fossil fuels with unpredictable prices, Maryland should adopt the French strategy of nuclear power with reprocessing of spent fuel rods. If there is political resistance to nuclear power, then the state should accept increased carbon dioxide with new plants fueled by domestic natural gas and avoid the unpleasant and costly surprises of wind power.

Charles Campbell is a retired senior vice president of Gulf Oil Corporation. He lives in Woodstock. His email is lochawe@verizon.net.

Copyright © 2014, The Baltimore Sun
Related Content
Renewable EnergyWind PowerSolar EnergyAlternative EnergyNuclear PowerGlobal Warming
  • Boost Maryland's renewable energy capacity
    Boost Maryland's renewable energy capacity

    Current power generation in Maryland is 52 percent carbon (coal, oil, gas) and 8 percent renewable (wind, water, solar).

  • Thankful for Obama's climate efforts
    Thankful for Obama's climate efforts

    The carbon emissions with which we humans pollute our atmosphere threaten to cause monumental environmental problems ("Climate breakthrough," Nov. 12). We here in the U.S. are among the worst offenders. Yet many in Congress are content to ignore this problem in pursuit of short term economic...

Comments
Loading