Owls have an advantage in that their neck arteries travel up a central axis. In humans, the major neck arteries are positioned near the outside, making them more vulnerable to twisting or jerking.

One finding that did not surprise the research team was the existence of many connections between blood vessels in an owl's neck — alternate routes to keep blood flowing even if there's a blockage along one pathway.

But the blood-pooling was a surprise, since in people arteries tend to get smaller until they end in tiny capillaries. Also unexpected were the big gaps in neck bones that are 10 times wider than the arteries themselves. In humans, the same arteries touch bone.

"We thought maybe there was one answer; what we found is there are many answers," Gailloud said, adding that owls have developed redundant features over time. "So even if one trick does not work at some point, you have two or three other tricks. It's a set of answers."

De Kok-Mercado's poster illustrating the findings in painstaking detail won first place in the posters and graphics category of the National Science Foundation's 2012 International Science & Engineering Visualization Challenge.

For Gregg and de Kok-Mercado, the research dovetails with their love of raptors. They volunteer at an aviary for permanently damaged raptors at the Soldiers Delight Natural Environment Area in Owings Mills. They talk to elementary school students about raptors and how human behavior affects them.

Many of the injured birds were hit by cars while trying to catch mice that had been attracted to the side of the road by littered apple cores or other discarded food, Gregg said.

De Kok-Mercado said "it doesn't really matter" that the findings have no clinical relevance to human medical treatment. To him the value is that it "goes to show how amazing these creatures are and makes people more aware of this planet in general."


  • Text NEWS to 70701 to get Baltimore Sun local news text alerts